Communication Dans Un Congrès Année : 2024

Hybrid Methodology Using Electroencephalogram and Eye-tracking for Virtual Reality Design and Optimization

Résumé

To design virtual reality (VR) applications, while traditional methods of collecting user feedback have been valuable, they sometimes fall short in providing a complete understanding of the user experience. In this study, we explore the use of physiological sensors to gather objective data in order to enhance VR design and optimization, alongside traditional feedback methods. By using software recording, eye-tracking and electroencephalogram (EEG), we obtained exploitable metrics such as cognitive load, attention, completion time and inputs handling. We combined them with user feedback to create a new methodology of controller selection for a teleoperation and training VR application. Our findings highlight the potential of incorporating bio-sensors to complement traditional feedback methods, paving the way for more immersive and effective VR experiences
Fichier principal
Vignette du fichier
ISMAR___Hybrid_Methodology_Using_EEG_and_ET_for_VR_Design___Optimization_poster_PREPRINT.pdf (1.87 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04911819 , version 1 (27-01-2025)

Identifiants

Citer

Léa Saunier, Marius Preda, Catalin Fetita. Hybrid Methodology Using Electroencephalogram and Eye-tracking for Virtual Reality Design and Optimization. 2024 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Oct 2024, Bellevue, France. pp.443-446, ⟨10.1109/ISMAR-Adjunct64951.2024.00129⟩. ⟨hal-04911819⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More